

Tools, resources, genotyping and phenotyping (getting more precise in WGIN4!)

Clare Lister, Scott Sheldrick and Simon Griffiths 4/10/2018

Continuing WGIN3 Projects

1. Drought tolerance in Paragon x Garcia 2017-18 Trial

- No spring drought during grain number formation but drought during grain filling
- Data not yet analysed

2018-19 Trial

• Will be drilled mid-October

2. Paragon Library

- DNA and seed from single plants
- Genotyped on Axiom 35K Breeders Array
- Library lines and genotyping data to WGIN website
- Seed stocks ready for distribution

Continuing WGIN3 Projects

3. Chromosome Segment Substitution Library for A x C

- DNA and seed from single BCF2 plants (57 lines)
- Markers generated by Polymarker
- Genotyping with markers for substituted regions Chr 1/2/3/4/5/6/7
- Genotyping data to WGIN website

- 1. Drought tolerance
- 2. Anchorage and lodging
- 3. Resistance to slug damage

4. CSSL

- 5. CSSL and ParLib data
- 6. Gene content around 2D, 3A and 6A
- 7. Promotome
- 8. Organise workshop on Yield Stability
- 9. QTL nominated to DFW Breeders Tool Kit
- 10. Curation and distribution of WGIN germplasm

- 1. Drought tolerance selection of lines
- 2. Anchorage and lodging selection of lines
- 3. Resistance to slug damage
- 4. CSSL (continuing from WGIN3)
- 5. CSSL and ParLib data to WGIN webpage when analysis complete(continuing from WGIN3)
- 6. Gene content around 2D, 3A and 6A
- 7. Promotome
- 8. Organise workshop on Yield Stability
- 9. QTL nominated to DFW Breeders Tool Kit 2 drought QTL

10. Curation and distribution of WGIN germplasm – ongoing

- Drought tolerance selection of lines
 Anchorage and lodging selection of lines
- Originally creating small collection about 50 lines but decided to get as many as possible from 'looong list' of lines sensitive or resistant to drought and / or lodging
- Many thanks to the breeding companies and RothRes for providing seed
- 1 m plots to bulk seed for yield trials in 2019/2020

Wheat Genetic Improvement Network

WGIN4 Projects

John Innes Centre

Possible Drought	RL crosses	Parent of	СІММҮТ	RothRes	Possible Drought	RL crosses	Parent of other	СІММҮТ	RothRes
and Lodging lines		crosses			and Lodging lines		crosses		
and Louging mes					and Louging mes				
Alchemy					 LG Motown				
Atilia					LG Skyscraper				
Avalon					 LG Sundance				
Вај					Lr19				
Barrel					Malacca				
Becard Kachu					Maris Widgeon				
Beluga					Mascani - OAT!				
Borlaug 100					MISR1				
Cadenza					Pamyati Azieva				
Charger					Panorama				
Chinese Spring					 Paragon				
CIMCOG 47					 Paragon EMS semi dwarves (x5)				
CIMCOG 49					 Paragon Rht D1 x B1				
Claire					Paragon RhtB1				
Conqueror					Paragon RhtB1 x Rht8				
Cordiale					Paragon RhtD1				
Cordiale 3N (Rec 5-1)					Paragon RhtD1 x Rht8				
Costello					Pastor				
Cougar					Pfau				
Crusoe					Pomerelle				
Denman					Reflection				
DFW Breeder Toolkit H17 (x3)					Revelation				
DFW Breeder Toolkit H18 (x3)					RGT Illustrious				
Einstein					Rht8				
Fiorello					Riband				
Freiston					Robigus				
Gallant					Savello				
Garcia					Scout				
Glasgow					Siskin				
Grafton					Skyfall				
Graham					Soisson				
Hereward					Sokoll				
Horatio					Solstice				
Hylux					Spark				
lcon					Super 152				
Invicta					Synth Type				
Istabraq					Treasure				
JB Diego					Watkins 110				
KWS Croft					Watkins Indian dwarfs W126				
KWS Gator					Watkins Indian dwarfs W127				
KWS Kielder					Waxwing				
KWS Santiago					Weebill				
KWS Silverstone					Wyalkatchem				
KWS Siskin					Xi19				
KWS Sterling			l		Zvat				
KWS Zvatt									
NVVJ Zyall						1	I		

- Drought tolerance selection of lines
 Anchorage and lodging selection of lines
- Preliminary anchorage tests on PxG...

7. Promotome

- John Innes Undergraduate Summer student, Scott Sheldrick
- Project to assess the diversity within the promoters of flowering time genes (from Trait 7 and 8 lists) among the 96 wheat species and accessions
- To facilitate genotyping of other wheat accessions
- Sequences were aligned to the Chinese Spring reference
- Used Integrative Genomics Viewer (IGV) to analyse the data.

Wheat Genetic

Improvement Network

Food & Rural Affairs

- CO8 promoter (7D)
- Not surprisingly more
 distantly related species
 had significantly altered
 promoter sequences.

John Innes Centre

WGIN4 Projects: Promotome

Sometimes get very clear data...

- FT4 promoter (2D)
- i.e. obvious variation between accessions Abbot and Alcedo.
- 15 SNPs and one insertion.
- Every wheat accession either had the variant allele or not.

nn Innes Centr

Department for Environment Food & Rural Affairs

SOC1 promoter

GID1 promoter

- Mis-binding of primers?
- Example from another project...
 - $\,\circ\,$ Added value or a complication?

WGIN4 Projects : Promotome

Classification	Number of promoter sets
Unusable	6
Clear variation	32
Complicated variation	48
Total	86

Promotor	Number of
FIONOCEL	alleles
AGL10 (2B)	3
AGLG1 (5A)	3
AGLG1 (5B)	3
CO2 (6A)	2
CO2 (6B)	4
CO7 (6B)	4
CO8 (7A)	2
ELF3 (1A)	6
FT1 (7A)	2
FT2 (3B)	2
FT3 (1B)	2
FT4 (2B)	2
FT4 (2D)	2
FT10 (5B)	3
FT10 (5D)	4
GA2ox3 (3A)	5
GA2ox3 (3D)	3
GA2ox4 (1A)	3
GA2ox4 (1B)	6
GA3ox1 (2A)	5
GA3ox1 (2B)	5
GID1 (1B)	4
GID2 (3A)	2
GID2 (3D)	7
PhyA (4A)	2
PhyC (5B)	2
Ppd1 (2A)	10
SOC1 (1A)	2
TOE1 (1A)	5
TOE1 (1B)	4
TOE1 (1D)	2
WCO1 (7A)	2

WGIN4 Projects : Promotome

- Used SNPs to manually design KASP markers for 19 of these genes
- Tested markers on Gediflux collection, 17/19 worked

	А	В	с	D	E	F	G	H
1	SubjectID	Co2-6A	Co2-6B	FT4-2B	FT4-2D	CO8-7A	TOE1-1A-4	
2	Peragis	DNA	AA	GG	AA	DNA	GA	
3	Admonter	AA	GG	π	GG	GG	GG	
4	Bersee	AA	GG	GG	GG	AA	GG	
5	Agron	DNA	DNA	DNA	AA	GG	DNA	
6	Eroica	AA	AA	GG	AA	AA	GG	
7	Саро	AA	GG	GG	GG	AA	GG	
8	Thor	AA	AA	GG	AA	GG	GG	
9	Danubius	AA	GG	π	GG	AA	GG	
10	Rimpaus Braun	AA	GG	GG	AA	AA	GG	
11	Drauhofener K	GG	AA	GG	GG	GG	GG	
12	Carstens 6	AA	GG	GG	AA	GG	GG	
13	Lindos	AA	AA	Π	GG	AA	GG	
14	Carstens 8	AA	GG	GG	GG	GG	GG	
15	Loosdorfer Aus	GG	AA	GG	GG	AA	GG	
16	Flamingo	AA	GG	GG	AA	GG	GG	
17	Schweigers Tag	DNA	DNA	DNA	DNA	DNA	DNA	
18	Arminda	DNA	GG	π	AA	DNA	GA	
19	sirius	AA	GG	GG	GG	GG	GG	
20	Granta	AA	GG	π	AA	AA	GG	
21	hanno	AA	GG	GG	GG	GG	GG	
22	Adam	GG	GG	GG	GG	GG	GG	
23	wizard	AA	GG	π	GG	AA	GG	
24	Aquila	AA	GG	π	GG	AA	GG	
25	baron	AA	GG	Π	GG	GG	GG	
26	Court"t	AA	AA	GG	GG	GG	GG	
27	kronjuwel	AA	AA	GG	GG	AA	GG	
28	Mironowskaja	AA	AA	GG	AA	GG	GG	
29	guardian	AA	AA	π	GG	GG	GG	
30	Nautica	AA	AA	Π	GG	AA	GG	
31	sabre	AA	GG	GG	GG	GG	GG	
32	Fakir	GG	AA	GG	AA	GG	GG	
33	renard	DNA	GG	GG	GG	DNA	GG	
34	Heine 7	DNA	GG	π	GG	AA	GA	
35	Escorial	AA	GG	Π	AA	AA	GG	
36	Werla	AA	AA	GG	AA	GG	GG	
37	lena	AA	AA	GG	GG	GG	GG	

- Association analysis performed to determine whether observed variation in *promoter genotypes* is associated with phenotypic *variation in height and flowering time*.
- Association with height and DTEM data assessed in the Gediflux collection, using a generalised linear model in the programme Tassel.
- From this the likelihood of a genotype-phenotype association was estimated.

hn Innes Centr

Several promoter genotypes showed significant association with flowering time and height phenotypes

Promoter	Associated Trait (Data year)	P-value
FT4 (2B)	Height (2011)	4.65e-6
	Height (2016)	7.74e-07
	DTEM (2011)	1.05e-3
	DTEM (2016)	0.01026
FT4 (2D)	DTEM (2016)	8.6e-3
TOE (1A)	DTEM (2016)	0.01029
CO2 (6A)	Height (2016)	0.03645
AGL10 (2B)	DTEM (2011)	0.02243
AGLG1 (5A)	Height (2016)	0.02049
CO7 (6B)	Height (2011)	0.03779
	DTEM (2016)	0.04408

John Innes Centre

Lots to do after drilling!

- Analyse PxG 2018 data
- CSSL genotyping and data
- Paragon library information and data
- Continuing Promotome analysis
- Gene content around 2D, 3A and 6A, now sequence publicly available

- June July very dry
- May July very sunny
- Temp exceeded 30 degrees on 5 days, late July-early Aug

90 80 70 Rainfall (mm) 60 50 40 30 20 10 0 Jan Feb Aug Mar Apr May Jun Jul Sep ■ 2018 ■ Long-term mean

Rothamsted Monthly Rainfall

2018 Rothamsted daily temperature

Rothamsted Monthly Sunshine

- Sown 1/11/17
- N applied in two applications, mid-Apr and 04/05/18

N100: 100:0 N200:

N350:

100:100

175:175

• Harvested 22/08/18

Diversity Mean grain yields 2004-2018

	2018 Yield	Rank	Mean
N0	4.91	4	4.22
N100	8.04	9	8.42
N200	8.37	15	9.95
N350	8.02	13	10.27

Year to year variation for selected varieties (N200)

2019 Varieties

W=WGIN data, D=desk study

Wheat varieties for WGIN/DFW NUE experiment 2018/19

16th year

NB lost Conq, Cordiale, Evol, Heref, Hystar, Illust, Leeds, Lilli, Reflect, Skyfall

Variety	Source	Nabim	Rationale	inclusion in trial requested by	Previous years of trials (harvest year)
1. Avalon		1	WGIN DH parent; Low NupE & NutE (D) WUE trial	PB, RG, MJH	05-18
2. Cadenza		2	WGIN DH parent; Best NupE (W) WUE trial	PB, RG, MJH	04-18
3. Claire	LIM	3	Was biggest area on RL; WGIN DH parent; Good second wheat	PB,PS	05-18
4. Crusoe	LIM	2	Carries dicoccoides. Shows the 'stay green' character		11-18
5. Graham	Syn	4	High yielding	МН	17-18
6. Hereward	RAGT	1	Best protein on RL; benchmark bread variety. BBSRC Quality project WUE trial	PB,PS	04-18
7. Hylux	Saaten Union		Hybrid. Early flowering and maturing. Can be mildew susceptible; treat T0. Good under stress Breadmaking?	s?MH	16-18
8. Istabraq	LIM	4	Best yield on RL; Distilling cultivar; In LINK 'GREENgrain'; Good second wheat. BBSRC Quality project. WL trial	IEPB,PS	05-18
9. KWS Barrel	KWS	3	Claimed high yielding	MH, AR	18
10. KWS Zyatt	KWS	1	Claimed high yielding	MH, AR	18
11. Malacca	KWS	1	Biggest Group 1 area; DH choice; Low NupE, high NutE (W). BBSRC Quality project	PS	04-18
12. Maris Widgeon		1	Tall (rht), old cultivar WUE trial	PB, AM	04-18
13. Mercia		1	Low NupE & NutE (desk); Low Canopy N requirement; In IGF micro-array. WUE trial. RHT series	RG	04, 06-18
14. Paragon	RAGT	1	Spring variety; WGIN mutagenesis population; High NupE (W)	РВ	04-18
15. Riband	RAGT	3	WGIN DH parent; Distilling cultivar; In LINK 'GREENgrain'; High NutE (W)	RG	04-18
16. Robigus	KWS	3	Best Group 3 yield; Best NUE, high NupE & NutE (D); Good second wheat. WUE trial	PB, AM	05-18
17. Siskin	ĸws	2	Consistent across regions. In CINAG trial inc at NW	K Goulding	17-18
18. Soissons	Elsoms	2	WGIN DH parent; Early maturing; High NupE, low NutE (W) WUE trial	PB,RG, AM	04-18 (no 17 data)
19. Solstice	LIM	2	Biggest Group 2 area; DH choice; Worst NupE (W)	RG	ROTHAMSTED ⁰⁴⁻¹⁸ RESEARCH
20. Xi19	LIM	1	Best Group 1 yield; High NUE, NupE, NutE (D); Low NupE (W).	PB,PS	04-18

Goal:

Achieve high resolution images to enable automated detection of traits not identifiable in low resolution images.

High resolution achieved by flying at lower altitude and/or with a longer focal length lens

Benefits Avoids requirement to orthomosaic images

Issues

Images must be collected at precise & known location Low flight speed/and or fast shutter speed required to avoid blurr

Field of view

Altitude	FoV (m)	GSD (mm)	FoV @ 45 degrees
3m	1.15 x 0.87	0.22	1.15 x 1.23
5m	1.92 x 1.44	0.37	1.92 x 2.04

45mm lens, 45degree angle (Scanalyser resolution 0.26mm)

Here Andrew showed several short videos to highlight the Increased downdraft when lowering flight height of the drone

Flight time

This experiment:

186m x 135m Current flight pattern for mosaicking: (186*10) + (135*2) = 2130m

@4m/s = 8.9min

Low altitude flight pattern: (186*6) + (135*2) = 1386m

@2m/s = 11.6 min

16M pixels, f/2.2, 1/2700sec, ISO100, 0 stop EV. 45mm lens. Camera @ 45 degrees (Static images)

3m altitude. 16M pixels, f/13, 1/1000sec, ISO100, -1 stop EV. 45mm lens. 2 m/s flight speed

Rothamsted

Malcolm Hawkesford March Castle David Steele Saroj Parmar Peter Barraclough

Farm Staff

Stephen Goward Chris Mackay Nick Chichester-Miles

Wheat Genetic Improvement Network

Rothamsted Research where knowledge grows

Resilience to foliar and root fungal pathogens

Vanessa McMillan

Department for Environment Food & Rural Affairs

BBSRC bioscience for the future ROTHAMSTED RESEARCH

WGIN MM 4th Oct 2018

- Resistance to septoria leaf blotch
- Resistance to yellow rust
- 3N ancestral introgression rooting trait
- Resistance to take-all disease in *Triticum monococcum*
- *Mlo* mediated resistance to powdery mildew

Septoria leaf blotch

Aim: To identify novel sources of resistance against Septoria which are robustly RESI expressed across multiple field seasons

Germplasm

Genetic

Network

mprovement

Department

for Environment

Food & Rural Affairs

- Watkins wheat landraces (trace or no Septoria in 2008 field trial, n=50)
- CIMMYT Septoria Observation Nursery (n=50)
- Wheat genotypes with known *Stb* resistance genes (n=15)

Stb1 Stb1 + Stb6
Stb1 + Stb6
Stb3 + Stb6
Stb4 + Stb6
Stb5
Stb6?
Stb7
Stb6 + Stb15
Stb9
Stb10 + Stb12 + Stb7 + Stb6
Stb11 + Stb7 + Stb6
Stb13 + Stb14 + Stb6
Stb16q + Stb17
Stb18 + Stb6
Stb16q

- Two replicates per treatment (limited seed availability)
- Outer plot rows sown to Avalon (highly susceptible to Septoria)
- Natural infection
- Rust specific fungicide regime

- Hertfordshire = relatively low disease pressure area for Septoria artificially inoculate 2018/19 field trial with mixture of Zt isolates
- Low humidity (low plant density and relatively large path areas) increase seed rate and plot size in 2018/19 field trial
- Dry weather in late spring and early summer, no irrigation possible trial to be irrigated in 2018/19 using new equipment purchased by RRes Farm
- T0 spray missed due to wet weather conditions, majority of genotypes highly susceptible to yellow rust increase number of sprays in 2018/19, consult with RRes agronomist on latest fungicide advice

Variation in susceptibility to Zt

Leaf 3 assessments 8th June 2018

Moderate negative correlation between plant height and % septoria infection

Some genotypes may be displaying disease escape phenotypes

Repeat field trial to be drilled October 2018

- Resistance to septoria leaf blotch
- Resistance to yellow rust
- 3N ancestral introgression rooting trait
- Resistance to take-all disease in *Triticum monococcum*
- *Mlo* mediated resistance to powdery mildew

Evidence of resistance to yellow rust

WGIN4 = F3 bulked segregant analysis on two most resistant Watkins genotypes

2018/19 Field Trial

F2 and F3 families will be phenotyped to identify homozygous susceptible and resistant lines

Department for Environment Food & Rural Affairs

Wheat Genetic

mprovement

Network

Seedling virulence testing @ NIAB

- 14/106 Purple 3 (previously known as the Kranich race)
- 15/151 Blue 7 (previously known as the Invicta race)

Wheat

Genetic

Network

mprovemer

2

for Environment

Food & Rural Affairs

16/035 Red 24 (new in 2016, caused disease on Britannia, Myriad, Zulu, Reflection amongst others)

4.0 3.5 3.0 Average infection type 2.5 Isolate 14/106 2.0 Isolate 15/151 1.5 Isolate 16/035 1.0 0.5 0.0 Watkins Watkins Watkins Watkins KWS Solstice Vuka 231 610 733 Siskin 203 786 Department

All Watkins genotypes are susceptible at the seedling stage

- Resistance to septoria leaf blotch
- Resistance to yellow rust
- 3N ancestral introgression rooting trait
- Resistance to take-all disease in *Triticum monococcum*
- *Mlo* mediated resistance to powdery mildew

Powdery Mildew

TILLING wheat for m/o mediated mildew resistance

Cadenza Tamlo-aabb00 line 2 doubles 141 108 singles Tamlo-AAbbdd line 1 Tamio-aa88DD Host cell entry 680 40 26 Tamio-AAbbDD Tamlo-AAbbdd line 2 triple Tamio-AA88dd line 1 Tamlo-aabbdd line 1 Tamlo-aabbdd line 2 Tamio-AABBdd line 2 1 cm Plant Biotechnology SEB aab 2017 lournal Plant Relevant/reliagy Journal (2017) 15, pp. 367-378 doi: 10.11110/06.12631

Cv Cadenza

Initially WGIN

funded

Seedling glasshouse screen

ROTHAMSTED

RESEARCH

Funders: German Federal Ministry of Food and Agriculture

Germany Society for the Advancement of Plant Innovation

mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach

Johanna Acevedo-Garcla¹, David Spencer¹, Hannah Thieron¹, Anja Reinstädler¹, Kim Hammond-Kosack², Andrew L. Phillips² and Ralph Panstruga¹*

for Environment Food & Rural Affairs

Whea

Genet

Improvement

Network

2017/18 Spring sown multiplication field trial

- 18 selected double and triple mutants (single replicate, 30 seeds)
- Replicated plots of Cadenza wildtype
- Foliar disease observations
- Ear emergence and plant heights

6 Cadenza plots, 4 double mutants, 14 triple mutants

Many genotypes started flowering before full ear emergence due to drought conditions

Cadenza = earlier flowering that double or triple mutants

Senescence

Leaf 2

Cadenza plots much more senesced...related to earlier ear emergence?

Impact of drought?

Plant Height

6 Cadenza plots, 4 double mutants, 14 triple mutants

Wildtype Cadenza slightly taller?

Powdery Mildew Assessments

Leaf 2

Low powdery mildew disease pressure

Trend for a reduction in powdery mildew infection for double and triple mutants

Brown Rust Assessments

Leaf 2

Overall relatively low brown rust disease levels across field trial

A couple of triple mutants with relatively high brown rust scores – perhaps due to location in trial?

Yellow Rust Assessments

Leaf 2

Some doubles and triples with higher yellow rust infection

2019 and 2020

Replicated field trials to explore the double and triple lines susceptibility/resistance to additional pathogens (as a winter crop) – yellow rust, brown rust, septoria and fusarium

Many thanks to

Kim Hammond-Kosack Kostya Kanyuka Mike Hammond-Kosack Gail Canning Carlos Bayon Tania Chancellor (2nd year PhD student) Jessica Hammond (Plant Pathology Apprentice)

Summer students

Erin Baggs (2015) Eleanor Leane (2015) Tessa Reid (2015) Laurie Neal (2015,2016&2017) Alex Chambers-Ostler (2016) Leanne Freeman (2016,2017&2018) Jamie Hawkesford (2017) Ellen Farnham (2017&2018) Georgie Halford (2018) Eoin Canning (2018) Niamh Kavanagh (2018)

Rodger White and Stephen Powers - statistics

RRes Farm and glasshouse staff

Update on Promotome Capture

Michael Hammond-Kosack (WGIN PA)

WGIN MM October 4th 2018 @ Limagrain

A	B	D

homoeologue specific MYbaits capture a) Promotome capture is
homoeologue specific only if these coverage patterns are observed.
b) observed coverage patterns. Please note that while Kronos and Ae. tauschii
have the exact AB and D subgenomes, respectively, T.monococcum and
Ae.speltoides are only related to the A and B subgenomes, respectively.

A working example of the type of results + specificity of the probes for A, B and D genomes

T4-57 (AK366042, Barley_2012_AC3_genes_3H 135.482)

T1-20 (APG/OsPIL16) A

MYbaits promoter cover under the high stringency conditions used

a) Promoters grouped by percentage of sequence cover: any promoters with
>50% MYbaits cover would be expected to yield the target sequence length (1700bp);
b) examples of lowest (T4-5), medium (T10-6) and highest cover possible (T2-26) showing the number and position (black bars) of MYbaits, sequencing coverage observed and sequence length obtained

similarity of homoeologue promoter (& 5'UTR) sequences (1700bp) for each trait category, grouped by increasing percentage of similarity.

lengths of sequence captured for 602 trait genes. Genes are ordered by size of combined promoter and 5'UTR length. a) blue = promoter sequence, orange = 5'UTR, grey = promoter + 5'UTR; b) green = Exon/Intron sequence, black = total length of sequence captured for each gene. Nb: the X-axis contains all 602 genes analysed so far but only a few tags are shown for visibility's sake

<u>Tm-Introgression into Landraces & commercial hexaploid wheat?</u></u>

VRN1 (T7-37) A homoeologue haplotypes

haplotype	SNPs	No.	cultivars	
А	5	12	CS, W115, W141, W203, W209, W579, W777, BW, CA, PA, TA, XI	
В	2	1	KR	
С	4	2	W160, BW,	
D	0	10	W199, CE, CL, CG, IQ, RO, SP, SU, AP, VE	
E	2	53	W246, W387, W624, W733, AB, AL, AM, AV, BA, BR, BU, CH, CO, CR, DI, EI, FI, FL, GA, GC, GT, GL, GR, HF, HW, HO, HU, IS, JB, KSA, KSL, KSI, KTR, MA, MH, MW, MK, ME, NA, OA, PI, RE, RL, RI, RB, SA, SF, SO, SL, ST, VA, YU, ZE	
F	1	3	W292, CP, RV,	
G	2	1	SS	
н	1	1	UK	

VRN1 (T7-37) B homoeologue haplotypes

haplotype	SNPs	No.	cultivars
А	0	3	CS, W199, PI
В	2	5	KR, W387, AV, MW, RL,
С	1	70	W141, W160, W203, W209, W246, W292, W579, W624, W733, W777, W786, AB, AL, AM, BA, BW, BR, BU, CA, CH, CL, CP, CO, CG, CR, DI, EI, FI, FL, GA, GT, GL, HF, HW, HO, HU, IS, IQ, JB, KSA, KSL, KSI, KTR, MA, MH, MK, ME, NA, OA, PA, RE, RV, RI, RB, RO, SA, SC, SF, SL, SP, ST, SU, TA, UK, AP, VA, VE, XI, YU, ZE
D	2	2	CE, SO
E	20	2	GR, SS
F	21	2	GC, W115

VRN1 (T7-37) D homoeologue haplotypes

haplotype	SNPs	No.	cultivars
А	0	17	CS, W141, W246, W292, W777, BW, BR, BU, CA, CO, GA, KTR, OA, RO, AP, VE, YU
В	0, del1	65	W115, W160, W199, W203, W209, W387, W579, W624, W733, W786, AB, AL, AM, AV, BA, CE, CH, CL, CP, CG, CR, DI, EI, FI, FL, GC, GT, GL, GR, HF, HW, HO, HU, IS, IQ, JB, KSA, KSL, KSI, MA, MH, MW, MK, ME, NA, PA, PI, RE, RL, RV, RI, RB, SA, SC, SF, SO, SL, SP, ST, SU, TA, UK, VA, XI, ZE
С	15, del1	1	SS

T7-37 (Vrn1) homoeologue expression

В

D

Subsequent homoeologues captured - how?

- 1. For **108 WGIN trait genes** only 1 or 2 homoeologue IDs were received
- For **78** of these, the missing homoeologues can now be identified via the Wheat eFP Browser resulting in **101 subsequent homoeologues**
- 3. Of these, **83 have been captured** in the WGIN promotome experiment, despite the fact that **NO Mybaits** were synthesised for these promoters:
 - all observe the subgenome specificity, eg the subsequent D homoeologue only shows coverage for Ae.tauschii but not Kronos, T.monococcum or Ae.speltoides
 - Virtually all have **reduced coverage (**= no. of aligned sequenced fragments) and **shorter length**

T10-19 (RPA1a): only A homoeologue ID received, and Mybaits were only made for the A homoeologue promoter

Update on Triticum monococcum Introgression

Michael Hammond-Kosack (WGIN PA)

WGIN MM October 4th 2018 @ Limagrain

Latest crossing strategy using tetraploid wheat as a bridging species

Figure 18: Crossing strategy for Introgression of *T. monococcum* into Hexaploid Wheat. Please note that all germplasms shown on the left are used as the females, to be pollinated with the fertile anthers of the male germplasms on the right (as indicated by the gender signs). Table 5: No of F_1 stigmas pollinated with Paragon and ' F_1 complex' grains obtained

	MDR031	MDR049	MDR308
Kronos	960 stigmas	120 stigmas	120 stigmas
Grains (% of stigmas)	7 (0.73%)	0	1 (0.83%)
Hoh501	1920 stigmas	400 stigmas	none
Grains (% of stigmas)	9 (0.47%)	0	n/a

a) Comparison of heights of triploid F_1 plant (left) and Hoh501 parent **b)** selfed Hoh501 grain-filled ear **c)** 'selfed' Hoh501 x MDR031 F_1 sterile ear (empty) **d)** ripening ' F_1 complex' grain. Note extruded anthers in c) and d) which never contained any pollen.
<u>Germination of $F_{\underline{1}}$ Complex Grains</u>

#	cross	germinated	vernalisation	growth	ears	BC ₁ F ₁ grains	selfed grains
24	[Kronos x MDR031]x[Paragon]	YES	YES		7	9	
25		NO					
27			YES				
34							
40	[Kronos x MDR308]x[Paragon]						
46-1	[Kronos x MDR031]x[Paragon]		YES				
46-2			YES				
47			YES		5	5 (1; 4)	1
66	[Hoh501 x MDR031]x[Paragon]		YES				
77							
82			YES				
84							
86-1			YES		6	Too early	
86-2			YES		5	Too early	
94			YES		4	Too early	
108							
112		1 of 3 seeds	YES				

